

Hydraulic Hydro Storage 2000 GWh

Prof. Dr. Eduard Heindl, Furtwangen University

Energy capacity of a body

 $E = g * \rho * R * V * h.(1)$

If the piston is a cylinder with a radius r and the height h where the height is of the same length as the diameter d of the cylinder, the volume can be calculated by

 $V = 2 * \pi * r^3$. (2)

The piston can be lifted by only half the length / of the piston

 $r = 1/2 \tag{3}$

due to the O-ring limitation, otherwise the O-ring would leave the outer cylinder. The potential energy E_r of the piston, using the density of rock ρ_R , is $E_r = 2^* \pi * g^* \rho_R * r^4$. (4)

The energy E_{HHS} that could be stored in the Hydraulic Hydro Storage (HHS) plant is reduced by the potential energy loss E_W of the water with density ρ_W which is injected in the cylinder capacity from a surface reservoir like the ocean, a large lake or strong river,

 $E_W = -3/2 * \pi * g * \rho_W * r^4$ (5)

resulting in the total energy capacity of

 $E_{HHS} = E_R - E_W = 2^* \pi * g^* \rho_R * r^4 - 3/2^* \pi * g^* \rho_W * r^4$ (6) equals to

 $E_{HHS} = (2*\rho_R - 3/2*\rho_W)*\pi*g*r^4$

- The capacity grows with the 4th power of the radius
- The cost grows with the 2nd power of the radius
- Result: arbitrary cheap storage systems feasible

Compare:	Conventional Pumped Hydro Storage*	New Hydraulic Hydro Storage*
Energy density	10 kWh/m	² 2 000 kWh/m ²
Water demand	1000 l/kWh	n 250 l/kWh
Flooded area	1000 m²/MWh	n 0 m²/MWh
Cost	70 €/kWh	າ < 7 €/kWh
*system design:	400m pond heigth, similar to Atdorf, German	y radius 500m lower source is a river or existing lake

Interesting sites:

Prof. Dr. Eduard Heindl, Furtwangen University, Robert Gerwig Platz 1, D-78120 Furtwangen, hed@hs-furtwangen.de